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Jet and Heavy Flavor production will be common at EIC...

[Fast simulation of charged-current deep-inelastic scatter at EIC, 10x275 ep configuration, Pythia8+ Delphes, single-charm-jet final-state]



At LHC, EIC, etc. jets have common features...
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Targets for AI/ML

* Calorimetry [c.f. D. Romanov, “Al for Calorimetry”]

* 1mproving clustering, calibration, etc. = all benefit large-scale questions like “is this a heavy-tlavor
decay/heavy-flavor jet”?

* Tracking [c.f. L.-G. Gagdon, “ML for tracking in HEP” and
G. Gavalian, “AT for tracking at JLAB”]

« 1mproving hit splitting, fake track rejection, etc. = crucial benetit to retining track selection for
eventual jet/heavy-tlavor 1dentification

* My focus
. /ML for combining low-level or high-level track/calorimeter information with intended purpose of

identifying jets and/or heavy flavor states

* Focus on examples/lessons from LHC experiments, while recognizing the challenges at LHC are not
the same as those at EIC — nevertheless, the gains for this application seen at LHC should provide
insights for major strides at EIC experiments!
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https://indico.bnl.gov/event/10699/timetable/#54-ai-for-calorimetry
https://indico.bnl.gov/event/10699/timetable/#7-ml-for-tracking-in-hep
https://indico.bnl.gov/event/10699/timetable/#53-ai-for-tracking-at-jlab
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Progression of Jet/H
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b-jet tagging efficiency

SV1, IP3D, JetFitter: dominant
methods in LHC Run 1 and very early
Run 2 (2010-2015) - single-feature-

based approaches

DLI: final Run 2 and early Run 3
(2020-present) method — multi-feature
deep-learning discriminant.
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MV1: dominant method in Run 2
(2016-2018) — multi-feature ML
discriminant (boosted decision tree)

F 1dentification with time and methods
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... and on online/real-time applications, too!
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Online/trigger applications always lag oftline applications due
to more conservative nature of operations. Nevertheless,
experiments moved as swiftly as possible to implement offline
approaches 1n online applications, and to achieve high-fidelity
performance compared to oftline = reduced trigger-related
systematic uncertainties.

At highlighted working point, online and oftline performance
agree to within about 5-10%.
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Recurrent Neural Network for Space-Itme Sequences

A real heavy-tlavor decay is a sequence Light-flavor decays are generally more
of correlated events in space-time prompt and sequences are coincidences.

Recurrent Neural Networks (RNNs) are designed exactly to learn about
sequence-based or time-ordered domains.

0O RelizetniilonelBinit NN — from Wikipedia)
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arXiv:2106.03584
ATL-PHYS-PUB-2017-003

b-jet

Displaced
Tracks

Secondary
Vertex

Prompt
Tracks

Jet

2-D and 3-D impact parameters (e.g. d,) a useful

measure (“Feature”) for presence of “displaced tracks”
(sign information comes from dot product of jet

vector with track IP-POCA/DOCA vector.)
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D ~In Pb Train RNN on track flight significance and
RNN = fobe + fopr + (1= fo— fo)Plight momentum/angle relationships in jet, and define a
likelihood score from the outputs (one for each
category)
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IP3D = original likelihood-based approach using only impact
parameters; MV2cl0 = multi-feature boosted decision tree
discriminant; SV1 = secondary vertex-only tagging

RNNIP exceeds performance of other
“single-feature” taggers, even when
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b-jet Energy and Resolution

Heavy flavor jets produce more charged

Normalized to Unity
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Dedicated corrections are needed
especially for these jets.
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Fidelity to “true value” has a strong
benefit in turning experimental results
back into fundamental statements.

Train a deep neural network on jet
kinematic, event pileup, leptons
matched to jets, vertexing, and jet
constituent (e.g. leading constituents)
information. Use Huber loss function
with three output targets: the mean
estimator and the 25% and 75%
quantiles of the target regression
distribution.
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AI/ML for Heavy Flavor States R

The use of machine learning for identitying heavy flavor states is well-documented and
widespread = “keep on keeping on”

Important test of pQCD and for informing
A*_production in p-Pb collisions future calculations, understanding Quark-
Gluon Plasma, etc.
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The multivariate analysis (MVA) is consistently
improved over the standard (STD) analysis, both in
statistical and in the impact of systematic uncertainties.
MVA approach leads to overall improved precision with

same data.

Stephen J. Sekula - SMU

lowest highest lowest highest I

T PT br PT

Yield extraction (%) 10 11 7 4
Tracking efficiency (%) 10 7 10 7
Cut efficiency (%) 9 12 8 6
PID efficiency (%) 6 6 neg. neg
MC p shape (%) 2 2 neg. 3
Multiplicity (%) neg. neg. neg. neg.
Beauty feed-down (%) 1 2 S
Branching ratio (%) 5.1
Luminosity (%) 3.5
- e
> i ALICE 1
% ol R-;Pb, VS = 5.02 TeV 1
g. E % -0.96 < ¥y < 0.04 E
~— C -~ A; — pK'n*, STD 1
o [ - A; > pK), STD |
2 0k = e AlopKr MVA
lg : == A — pK_, MVA E
g = :
==
E + 3.7% lumi. uncertainty not shown E
0 - .‘:'I> - 1|0 —
P, (GeV/c)

18/38



Deep-Learning Many-Feature/B

<

method, ML/AI or not.

significant (described earlier in the talk, e.g. 3x or
greater improvement in light-jet rejection). o Pet (1= Je) - Pugw

Focus here will be on validation of these methods using
data and simulation, which from an experimental
perspective is the most important factor for any

ATLAS

Performance improvements achieved are notable and “DL1”

h-Level Approaches
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Performance Assessment in Data: Examples
FEATURE EXAMPLE
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Data/MC Simulation Corrections

Using control-region data and simulation, define a per jet
data-to-simulation “scale factor” (SF):

SF,

1.4

1.2

SFy = e (pr. )/} (pr. 1)
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35.9 fo' (13 TeV, 2016)

Simulation approaches are within 5-10% of the data — expect that to get better.
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2018 JINST 13 P05011

Charm Tagging A s oy s

The ML/AI era has enabled advanced approaches not just to b-jets but to more-ditficult-to-tag charm jets,
which are definitely “heavy flavor” but more similar to light jets than are b-iets.

.d w s, d W dd
EXAMPLE: W+c events T AW AN wiw
(1 like these because of the extreme similarity to CC » c g | & uu b
DIS at EIC...!) 000000 ———— 000000 ———— -~
c,D...
359 fb™ (13 TeV, 2016)
-
2 o5 CMS .o
3 i L CMS (and ATLAS) have similar conceptual
= i =} : approaches (DNN, BD'Is, etc.) and each
E __:::_ . . . . . .
o ol reports a light mis-identification rate ranging
- from about 1%-5% across a momentum range
L cisgger M spanning 1000 GeV, for a charm jet efticiency
0s ° Data of ~40%.
| o Simulation
6 ::_+_ i Adopting similar approaches, long-term, for
E ] 0
Jet P, [GeV]
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ILessons

* Deep-Learning approaches can be superior, even iven the same (limited) information as earlier
approaches (BDT, likelihood ratios, etc.)

* Be attentive to fidelity between online/real-time application of approach and offline application — reduce systematics
* Modern simulation techniques can provide reliable training samples, but caution 1s nevertheless always

warranted

* For example: data/MC correction factors (“scale factors”) not enlarged by using more information with deeper
learning methodologies, despite potential risks of using lots of deep information whose modeling may not be as
reliable as the whole.

 Validation, validation, validation: trust 1s built, as always, by assessing performance in as many ways
(1deally on real data) as possible. Trust in the application of these advanced methods to places where we
cannot yet check performance 1s built of trust in performance where we already knew/know the answer.

* For example: higher acceptance, better resolution, etc. allow for phase space/physical space in detector experiments to
be carved up into many control regions = more validation with more controls.
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LHC Running Schedule

2019 2020 2021 2022 2023 2024 2025 2026 2027
JIFMAM|J|J|A|S|OIN|D I |FIMIAIM|] [J|A|S|OIN|D{ |FIMAIM| I |J|A|S|OIN|D{J |FIMAIM| 1 |J|A|S|OIN|D{ |[FIMAIM| 3 | |A|S|OIN|D{J [FIMA(M| 1 |J [A|S|ON|D{ [FIMAM|J | ] [A|S|ON|D{J [FIMAM|J | |A|S|ON|D{J [FIMAM| ]| |A|S|ON

{. Long Shutdown 2 (LSZ)J \ Run 3 { Long Shutdown 3 (LS3)‘.

IRNANRNRRERRERNREA AR AR NN

2028 2029 2030 2031 2032 2033 2034 2035 2036

Shutdown/Technical stop

Protons physics

Ions

Commissioning with beam

Hardware commissioning/magnet training

https://lhc-commissioning.web.cern.ch/schedule/LHC-long-term.htm
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AT

Unrolled RNN

2D unit vector

LAS RNN Tagger Architecture

ATL-PHYS-PUB-2017-003
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ATLAS “DLI1(r)” Architecture W

IP based Muon based SV based
S
S 'i‘; IP2D | | IP3D | | RNNIP SMT SV1 | | JetFitter
egory @ = FuEIyCo:mmed 3
SofthMax '4

:ﬁ 32 =, "

e MV2 DL1

E;D 1000 tree BDT 8-layer MLP

4 5

Image credit: N. Hartman
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CMS “DeepJet” J0T8JINSTI3P05011

Employs KERAS + TensorFlow (low-level operations like convolution) for training for “Combined
Secondary Vertex Tagger” (CSV) — this and other feature taggers are combined into a single BDT
output called “cMVAv2”.

Charged (16 features) x25 1x1 conv. 64/32/32/8 RNN 150
b
Neutral (8 features) x25 1x1 conv. 32/16/4— RNN 50 Dense bb
200 nodes x1, c
Secondary Vix (17 features) x4 1x1 conv. 64/32/32/8 RNN 50— 100 nodes x6 uds
g
Global variables (6 features)

DeepJet: A deep-neural-network algorithm based on 18 properties of up to 25 charged and 6 properties of 25 neutral
particle-flow jet constituents, as well as 12 properties from up to 4 secondary vertices associated with the jet. For each
collection of charged and neutral particles and vertices, separate 1x1 convolutional layers are trained: 4 hidden layers
with 64,32,32, and 8 filters for charged candidates and vertices and 3 hidden layers with 32,16, and 4 filters for neutral
particles. The filters act on each particle or vertex individually. The compressed and transformed output is fed through a
separate recurrent layer for each collection with 150 nodes for charged candidates and 50 nodes for neutral candidates
and secondary vertices. The output of these layers combined with global variables such as pT and n of the jet and is
turther processed by one dense layer with 200 nodes, followed by 7 hidden dense layers each with 100 nodes
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